Methods for Nonconvulsive Epileptic Seizure Monitoring
Dublin Core
Título
Methods for Nonconvulsive Epileptic Seizure Monitoring
Materia
Ciencias técnicas, Ingeniería electrónica
Ciencias Sociales
Descripción
In this thesis a patient-specific method is presented and evaluated for real-time NCES detection from scalp EEG applying a combination of tensor analysis and machine learning algorithms. The automated NCES detection facilitates alerting the doctors about the patient risk to evolve to NCSE. In particular, this proposal attempts to identify the NCES based on their similarity to the first NCES detected by the physician on the EEG. The analysis is performed by expanding the EEG signal in third-order tensors, with dimensions “frequency× time × channels”. The components extracted for each dimension are used as input to a binary classification problem to detect the NCES. This approach is shown to outperform several methods proposed in the literature for NCES displaying accuracy values over 98%. Yet, a decrease in performance was observed during evaluation when EEG pattern morphology underwent changes.
Autor
Rodríguez Aldana, Yissel Rodríguez
Marañón Reyes, E. J. (Director)
Huffel, Sabine Van (Director)
Editor
Editorial Universitaria
Fecha
2018
Colaborador
Cuba, Ministerio de Educación Superior
Derechos
Relación
Formato
pdf Interactivo (3,34 Mb)
Idioma
Inglés
Tipo
Texto
Identificador
isbn:9789591643322
Cobertura
Santiago de Cuba
Colección
Citación
Rodríguez Aldana, Yissel Rodríguez, Marañón Reyes, E. J. (Director), y Huffel, Sabine Van (Director), “Methods for Nonconvulsive Epileptic Seizure Monitoring,” Catálogo EDUNIV, consulta 22 de noviembre de 2024, http://repositorio.eduniv.cu/items/show/1498.